

Properties of Shapes

MathSphere
© MathSphere www.mathsphere.co.uk

Notes

This module gives practice in sorting shapes according to their properties.

Children have a good knowledge of triangles, different types of quadrilaterals, pentagons, hexagons and octagons and should be able to find the perimeter and area of simple shapes.

In addition, they should know that the sum of angles around a point is 360°, the sum of the angles of a triangle is 180°, angles in an equilateral triangle are each 60° and the sum of the angles in a quadrilateral is 360°.

They should be able to calculate angles using any of the above, e.g. one of the equal angles in an isosceles triangle is 35°, what are the other two angles?

They should know and recognise acute, right, and obtuse angles.

Properties of shapes - piece of cake!

1. Write down one property of each of the following shapes:
a) Equilateral triangle.

\qquad
b) Isosceles triangle.
c) Right angled triangle.
d) Parallelogram.
e) Trapezium
f) Kite.
g) Regular hexagon.
h) Regular octagon.
2. Join each shape to the sum of its interior angles

You may need to use each number more than once!

Right angled triangle

Pentagon

Trapezium

Equilateral triangle

Parallelogram

Hexagon

Isosceles triangle

Square

Rhombus
www.mathsphere.co.uk

Tick the true statements and cross the false statements.
a) PQRS is a rectangle.

b) PQRS is a parallelogram. \square
c) PQRS is a rhombus. \square
d) Angle \mathbf{R} is acute. \square
e) Angle \mathbf{Q} is acute.

f) $P S$ is parallel to $Q R$. \square
g) Angle \mathbf{P} is greater than angle \mathbf{Q}. \square
2. Three marks are spaced equally around a circle at \mathbf{A}, \mathbf{B} and \mathbf{C}. A triangle is drawn between \mathbf{A}, \mathbf{B} and \mathbf{C}.
a) What type of triangle is it?

b) What is the angle \mathbf{A} ?

Why did the painter wear many clothes to paint the house?

1. Measure the angles in this hexagon. Find the total of all the angles.

2. What are the missing angles in these diagrams:

Angle w = \qquad
Angle $\mathbf{x}=$ \qquad
Angle $y=$ \qquad
Angle $\mathbf{z}=$ \qquad
3.

a) ABCD is a square.

What is the value of \boldsymbol{m} ?
b) The angle DCR is one corner of a regular polygon.

What is the name of the polygon?
2. Here is a shape drawn on a square grid.

a) What is the value of angle D?
b) What is the name of the shape?
c) Name the group of shapes to which this shape belongs.
d) What is the total of angles A, B and C ?
3. STUV is a rectangle. ST and VU are the longer sides. Draw the rectangle and draw the diagonal SU.
Angle VSU is twice angle VUS. What is the value of angle UST ?

1. Here is half a shape drawn on a grid. The shape has reflective symmetry about the dotted line. Draw the other half of the shape.

2. Here is half a shape drawn on a grid. The shape has rotational symmetry of order 2 about the point \mathbf{P}. Draw the other half of the shape.

Where did Napolean keep his armies?

Up his sleevies!!!!

1. Can you complete this table for these quadrilaterals?

Name	Total of Angles is 360°	Has one set of parallel sides	Has two sets of parallel sides	Opposite angles are equal	Has one pair of equal sides	Has four equal sides
Rectangle						
Square						
Kite						
Parallelogram						
Rhombus						
Trapezium						

To tick or to cross, that is the question!
2. Simon says he has just measured the angles of a hexagon. The total of his measurements was 544°.

Do you think he could have made a mistake? Give a reason.

If he did not measure the angles of a hexagon, what shape could it have been?
1.

$\mathbf{P Q}, \mathbf{Q R}, \mathbf{R S}$ and $\mathbf{S P}$ are four equal length rods loosely connected at $\mathbf{P}, \mathbf{Q}, \mathbf{R}$ and \mathbf{S}.
\mathbf{P} is fixed to a wall MN.
\mathbf{R} is moved in the direction of the arrow so that the angle NPS increases by 4°.

What happens to the angle SPQ ?

What happens to the angle PSR ?
2. Here are some parallelograms. Measure the distances from the centres to the corners of the parallelograms.

What can you conclude about the diagonals of parallelograms?

What insect can fly underwater?

A wasp in a submarine!!!!
1.

Calculate the size of angles \mathbf{m} and \mathbf{n}.

$$
\begin{aligned}
& \mathrm{m}=\square \\
& \mathrm{n}=\square
\end{aligned}
$$

2. Here is a square. The problem is to cut off three right angled isosceles triangles to leave a pentagon.
Draw the three triangles on the diagram and shade them.

3. An isosceles triangle has one angle of $\mathbf{2 8}^{\circ}$.

What could the other angles be?
Show your working.
\qquad and \qquad
\qquad and \qquad

Here's a great game you can play.

RULES: Play in pairs. The first person makes several shapes of their own choice on the pinboard using elastic bands. The second person has a rule in mind such as "The shape must have four sides".

The second person tells the first person which of his/her shapes fit the rule, but does not say what the rule is.

The first person keeps making shapes and the second person tells him/her which shapes fit the rule.

The idea of the game is that the first person should guess the rule.
Preferably before they both fall over with exhaustion!

Answers

Page 3

1. a) Equilateral Triangle: All sides same length $O R$ all angles same size.
b) Isosceles triangle: Two sides same length OR two angles equal.
c) Right angled triangle: Has one right angle.
d) Parallelogram: Opposite pairs of sides parallel (or equal in length) OR opposite angles equal OR diagonals bisect each other.
e) Trapezium: One pair of sides parallel.
f) Kite: Two pairs of adjacent sides equal OR one pair of opposite angles equal.
g) Regular hexagon: All sides same length OR all angles equal.
h) Regular Octagon: All sides same length OR all angles equal.
(N.B. Do not accept 'has 6/8 sides as any hexagon/octagon has that property).

Page 4

1. 180° : Right angled triangle, Equilateral Triangle, Isosceles triangle.
360° : Trapezium, Parallelogram, Kite, Square, Rhombus.
540° : Pentagon.
720ㅇ: Hexagon.
1080́: Octagon

Page 5

1. a) False
b) True
c) False
d) True
e) False
f) True
g) False
2. Equilateral. 60°

Page 6

1. $A=126^{\circ}, B=100^{\circ}, C=149^{\circ}, D=112^{\circ}, E=122^{\circ}, F=111^{\circ}$, TOTAL $=720^{\circ}$ or quite close, allowing for errors in measurement.
2. $w=95^{\circ}, x=143^{\circ}, y=63^{\circ}, \quad w=150^{\circ}$,

Answers (Contd)

Page 7

1. a) 120°
b) hexagon
2.

a) 90°
b) Kite
c) Quadrilaterals
d) 270°
3. 30°

Page 8
1.

Answers (Contd)

Page 9

1.

Name	Total of Angles is 360°	Has one set of parallel sides	Has two sets of parallel sides	Opposite angles are equal	Has one pair of equal sides	Has four equal sides
Rectangle	\checkmark		V	V	x	
Square	\checkmark	r	\checkmark	\checkmark	-	\checkmark
Kite	\checkmark		x	$\checkmark>$		x
Parallelogram	\checkmark	χ	\checkmark	\checkmark		
Rhombus	\checkmark		\checkmark	\checkmark		\checkmark
Trapezium	\checkmark	\checkmark	$\$$	x	\checkmark	x

Note the tick and cross in opposite angles equal for a kite. This provides a good discussion point about the use of language in this work as a kite has one opposite pair of angles equal and one opposite pair not equal.
2. The total should be 720° or thereabouts for a hexagon (allowing for errors in measurement).

He probably measured a pentagon, for which the sum is 540°.

Page 10

1. Angle SPQ reduces by 8°. Angle PSR increases by 8°.
2. The diagonals bisect each other (cut each other in half).

Answers (Contd)

Page 11

1. $\mathrm{m}=135^{\circ} \mathrm{n}=30^{\circ}$
2.

3. 28° and 124° OR 76° and 76°

Page 12

This is a very good game for stimulating discussion. Other rules that may be considered are such things as:

Opposite angles must be the same.
The shapes must be hexagons.
There must be at least one pair of parallel sides.

The teacher may also invent one rule for the whole class to guess. $\mathrm{He} /$ she will have to be pretty quick on his/her feet, though!

