

Y6 Number and Place Value 6140

Revise estimating and approximating numbers.

Equipment

Paper, pencil, ruler, calculator, real pennies, real $2 p$ pieces, stop watch

MathSphere
 © MathSphere www.mathsphere.co.uk

Concepts

Children should be familiar with numbers up to 1000000 and be able to estimate simple proportions of 10000 and multiples of this number, both on a number line and in practical situations. They should be able to deal with simple negative numbers in the same context. They should also be able to say how they arrived at their estimate.
They should be able to say how accurate their estimates are.
Children should be able to estimate large numbers of items that are often not uniformly spread such as leaves on a branch or bricks all round a house.

Children should also be familiar with the meanings and spellings of these words:
guess, estimate, approximate, roughly, nearly, approximately, too many, too few, enough, not enough, round, nearest.

And the symbol for "approximately equal to" $\approx(\quad)$.

With these questions be prepared to say how you got your answers.

1. This line shows the numbers up to 10000 divided into thousands.
Draw an arrow to show the following numbers (the first has been done for you).
5000, $7500, \quad 3$ 200, $1000, \quad 9900$

2. Where are the arrows pointing on this line?

3. Where are the arrows pointing on this line?

4. Where are the arrows pointing on this line?

With these questions be prepared to say how you got your answers.

1. This line shows the numbers up to 10000 divided into thousands.

Draw an arrow to show the following numbers (the first has been done for you).

2. Where are the arrows pointing on this line?

3. Where are the arrows pointing on this line?

4. Where are the arrows pointing on this line?

With these questions be prepared to say how you got your answers. Use a calculator if you need to.

1. Is 100000 seconds more or less than one whole day? How did you work this out?

Write down three things that would take you less than half a day, but more than a tenth of a day.
2. Which of these could you do in 1000000 seconds or less?
a) have a week's holiday
b) run a 10 Km race
c) have a 20 day cruise
d) swim 100 lengths of your local swimming pool
e) walk from Manchester to London.

How did you decide?
3. If you wanted to transport 1000000 marbles, all at the same time, would you need
a) a paper bag
b) a bucket
c) a shopping trolley
d) a lorry
e) a large aeroplane?

How did you decide?
4. How many one penny coins would you need to reach 1 Km when placed side by side?

Explain how you worked it out?
5. How many one penny coins would you need to reach from the Earth to the Moon $(400000 \mathrm{Km})$ when placed side by side?

Explain how you worked it out.

With these questions be prepared to say how you got your answers.
Use a calculator if you need to.

1. Is 600000 seconds more or less than one whole week? How did you work this out?

Write down three things that would take you more than 300000 seconds, but less than 500000 seconds.
2. Which of these could you do in 16000000 seconds or less?
a) walk 160 Km at 1 Km per day
b) swim the English Channel (20 Km approximately)
c) have a skiing holiday of one month
d) say all your tables 10000 times
e) watch the Moon go round the Earth 10 times.

How did you decide?
3. If you wanted to transport 1000000 two penny coins, all at the same time, would you need
a) a paper bag
b) a bucket

That's a lot of money! Don't call us, we'll call you.
c) a shopping trolley
d) a lorry
e) a large aeroplane.

How did you decide?

4. How many two penny coins would you need to reach 1 Km when placed side by side?

Explain how you worked it out?
5. How many two penny coins would you need to reach from the Earth to the Sun (150000000 Km) when placed side by side?

Explain how you worked it out.

Mini Investigations

In these investigations make sure you write down your results very carefully. Use a calculator if you need to.

1. Estimate how many blades of grass there are in a square metre of grass.

Use this to estimate how many blades of grass there are in your lawn or playing field.

If each blade of grass is 3 cm long, what is the total length of all the grass in the lawn or field?
2. How many leaves are there on a small branch of a nearby tree?

How many on a larger sector of the tree (say a large branch)?
How many leaves are there in the tree?
Draw round a leaf and find its area in square centimetres.
What is the area of all the leaves in the tree in cm^{2} ?
What is this area in m^{2} ? Is this bigger than the floor area of a room?
3. Look at a set of encyclopaedias.

Estimate how many words are on one page.
Estimate how many words there are in one volume of the encyclopaedia.

Estimate how many words there are in the complete set.

Mini Investigations

In these investigations make sure you write down your results very carefully. Use a calculator if you need to.

1. Estimate how many names there are in a telephone directory page.

How many are there in the whole directory?
How many centimetres does each name take up if you include the telephone number?

What is the total length of all the names in the directory in centimetres.

How long is this in metres?
How long is this in kilometres?
2. Look at a set of encyclopaedias.

How many pages are there altogether in all the volumes?
How much does this paper weigh?
A company produces 200 sets of encyclopaedias each day. How much does this weigh?

Seventeen trees are needed to make a tonne of paper. How many trees are needed for these 200 sets of encyclopaedias?
3. Plan an investigation to calculate how many bricks were used when your school or street was built.

Answers

Page 3

2. A 1500
B 3100
C 5000
D 8500
3. $\mathrm{A}-80$
B -58
C -34
D -10
4. $\mathrm{A}-63$
B -32
C -12
D 6

Page 4

2. A 0.2
B 0.4
C 0.65
D 0.94
3. $\mathrm{A}-60$
B -38
C -14
D 10
4. A -43
B -12
C 8
D 27

Page 5

1. More. 1 day $=86400$ seconds.
2. a) b) d) (given a good swimmer) e) (given a good walker)
because 1000000 seconds $=11.57$ days
3. Assume marbles are roughly 1 cm diameter, 1000000 marbles is a cubic metre. Therefore lorry needed.
4. $50000 \quad 1$ coin is 2 cm diameter
5. $50000 \times 400000=20000000000$

Page 6

1. Less (6.94 days)
2. a) b) (given a good swimmer) c) d) (26.6 mins each set non-stop) because 16000000 seconds is approx. 185 days.
(Moon takes more than 270 days for 10 orbits of Earth)
3. One coin is 2.6 cm diameter and 1.2 mm thick.

The pile could be $100 \times 100 \times 100$ coins.
This would be approx. $2.6 \mathrm{~m} \times 2.6 \mathrm{~m} \times 12 \mathrm{~cm}$, so lorry required.
4. Approx 38 per metre. So 38000 per Km.
5. $150000000 \times 38000=5700000000000$ (Five trillion, seven hundred billion).
As this number will not fit onto a calculator, children may need some help with this one. Try 150×38 on calculator and add nine zeroes!

